

イミド系エポキシ硬化剤のご紹介

ユニチカ株式会社 中央研究所

イミド系エポキシ硬化剤とは

- イミド築工ポキシ硬化剤

●耐熱タイプ(BI-H1)

芳香族構造

耐熱性 高靭性(高強度) 絶縁性

●柔軟タイプ(BI-F5)

長鎖構造

柔軟性 (低弹性率·高伸度) 低誘電特性

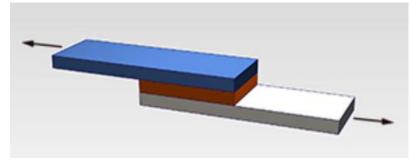
併用により、耐熱と柔軟の両立が可能

開発品の物性

項目	単位	耐熱タイプ	柔軟タイプ	
		(BI-H1)	(BI-F5)	
官能基当量	g/eq	274.23	1510.54	
融点	°C	379	_	
ガラス転移点	°C	_	-9	
形状		黄色粉末	黄色粘性液体	
粒径(D50)	μ m	6.6	_	
业 ⊢ 	Pa·s		18767(30°C)	
上 料度		_	480(60°C)	
	シクロヘキサノン	×	0	
	トルエン	×	○(60°C)	
溶剤溶解性	MEK	×	○(60°C)	
(20wt%)	NMP	○(130°C)	○(100°C)	
	DMF	△(130°C)	○(130°C)	
	DMI	○(15wt%)	_	

硬化物の物性

硬化条件


エポキシ樹脂:BADGE(BisAジグリシジルエーテル)、硬化促進剤:2E4Mz(2-エチル-4-メチルイミダゾール) 0.2wt%

混合比率:主剂/硬化剂=1/1(等量比)、硬化条件:120℃1h→(22.5℃/h)→300℃1h

項目	試験条件	単位	耐熱タイプ (BI-H1)	柔軟タイプ (BI-F5)	耐熱タイプ /柔軟タイプ ^{*1}	フェノールノホ゛ラック	フェノールノホ [*] ラック / 柔軟タイプ^{*1}
ガラス転移点	- DMA	°C	223	14	212	132	128
貯蔵弾性率*2	DIVIA	MPa	2730	3	1970	2765	1639
引張強度	破断	MPa	96	3	67	54	42
引張伸度	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	%	9	358	10	2	4
比誘電率 Dk	5.8GHz		3.05	2.21	2.91	3.08	2.86
誘電正接 Df	(共振器法)		0.014	0.007	0.011	0.033	0.027
線膨張係数	50~100°C	$\times 10^{-6}$ /°C	57	1632 ^{*3}	86	70	81
5%重量減少温度	空気	°C	385	314	380	369	369
吸湿率	85°C85%RH	300h %	1.01		0.86	1.53	1.19

引張せん断接着強さ (JIS K 6850)

試料	引張せん断接着強さ (MPa)	破壊様式		
耐熱タイプ(BI-H1)	11.7	凝集破壊		
耐熱/柔軟	12.3	凝集破壊		
柔軟タイプ(BI-F5)	1.4	ピールを伴う接着破壊、凝集破壊		
フェノールノホ゛ラック	2.7	接着破壊		
フェノールノホ゛ラック/柔軟	3.6	接着破壊orピールを伴う接着破壊、凝集破壊		

被着材:銅(JIS H 3100 C110P)

接着面積:25mm×12.5mm

※はく離接着強さ試験も実施したが、接着が強く測定不可であった。

耐熱タイプの使用方法 (参考)

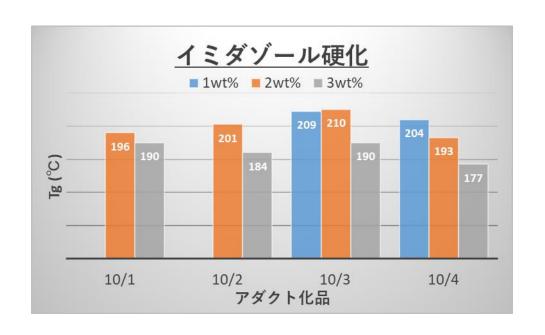
アダクト化の利用→相溶性、流動性を改善することが可能。

○アダクト化条件

エポキシ樹脂:2官能型エポキシ樹脂、硬化剤:耐熱タイプ(BI-H1)、硬化促進剤:ホスフィン類(TPP) 0.2wt%

混合比率:主剂/硬化剂=10/1~4(当量比)、加熱条件:150℃30min~1h

マダカトル	エポキシ樹脂		ナフタレン型エポキシ樹脂 HP-4032D				
アダクト化 組成	硬化剤		耐熱タイプ(BI-H1)				
ルロンス	当量比(主剤/硬化剤)		10/1	10/2	10/3	10/4	
エポキシ当量	NMR	g/eq	216	309	400	543	
粘度	レオメーター(140°C)	Pa·s	0.1	2	17	162	



耐熱タイプの使用方法 (参考)

○アダクト化品の硬化条件

アダクト化品: HP4032D/耐熱タイプ(BI-H1)= 10/1~4(当量比)

硬化剤:イミダゾール類(2E4Mz) 1~3wt% 硬化条件:200℃3h

アダク	卜化品*	10/3	10/4	
比誘電率 Dk	5.8GHz	3.22	3.21	
誘電正接 Df	(共振器法)	0.0279	0.0272	

*2E4Mz 1wt%硬化

耐熱タイプの使用方法 (参考)

○アダクト化品の硬化条件

アダクト化品: HP4032D/耐熱タイプ(BI-H1)= 10/3(エポキシ当量: 400 g/eq)

硬化剤:酸無水物類(Me-HHPA)、アミン類(DDM)、硬化促進剤:2E4Mz 0.2wt% 硬化条件:200℃3h

