UNITIKA UNITIKA PLASTICS DIVISION
Japanese Chinese
Printing Tips
Nylon Resin U-polymer TERRAMAC Unilate Elitel
Nylon6
Grade List
General
Properties
Mechanical
Properties

Electrical
Properties

Environmental
Properties
Water
Absorption

Weather
Resistance

Thermal
Degradation

Chemical
Resistance

Molding
Condition


Nano-Composite Nylon6
RUN Series
 
Nylon66
 
Applications
 
Contact Us
NylonResin > Nylon6 > General Properties (1) Mechanical Properties   Top Page
[UNITIKA Nylon Resin] Nylon6

General Properties

UNITIKA nylon 6 resins have a variety of properties.
It is important to understand the basic properties of resins and use them correctly in producing molded products.
Here in this page, the mechanical, thermal and electrical properties of UNITIKA nylon 6 resins are described, mainly focusing on A1030JR (high cycle) and A1030GFL (30% glass fiber-reinforced) resins.

(1) Mechanical Properties

Mechanical properties of materials are quite important. The properties of nylon resins vary according to the temperature, water content, and others. Therefore, it is important to know in advance how the resins may change according to these factors.
<Tensile Strength>
OtA4pʈ
The relationships between tensile strength and water content, and between tensile strength and temperature are shown in Figures 1 and 2. (Test method: ASTM)

Figure 1.Relationship between tensile strength and water content Figure 2. Relationship between tensile strength and temperature

<Bending Properties>
Bending properties are also important factors in designing products, and the bending properties are also affected by temperature and water content, like tensile strength. In Figures 3 and 4 are shown the relationships between bending properties and water content; and in Figures 5 and 6, between bending properties and temperature. (Test method: ASTM)

Figure 3. Relationship between bending modulus and water content Figure 4. Relationship between bending strength and
water content


Figure 5. Relationship between bending modulus and temperature Figure 6. Relationship between bending strength and temperature



<Impact Strength>
OtA4pʈ
The impact strength is quite important when the products are used as mechanical parts. The impact strength suffers greater influence from water content and temperature than other mechanical properties. The relationships between impact strength and water content and between the impact strength and temperature are shown in Figures 7 and 8. (Test method: ASTM)

Figure 7. Relationship between impact strength and water content Figure 8. Relationship between impact strength and temperature

<Creep Properties>
A phenomenon that the deformation of a product gradually increases over time under a certain load is called the creep phenomenon. The creep properties are important factors to be considered in designing products that may be exposed to stresses for an extended period of time. Tensile creep curves are shown in Figures 9 and 10.

Figure 9. Tensile creep curve of A1030JR
Figure 10. Tensile creep curve of A1030GFL, 23°C, Dry